
Low-Risk

Low-risk code

Medium-Risk

Medium-risk code

High-Risk

High-risk code

0x9 1B2 745d7 a cA9D64560cD 169 3b6 fF 96678F fC43 3
[Disclaimer]

AuditBlock is not liable for any financial losses incurred due to its services. The information provided in this contract audit should

not be considered financial advice. Please conduct your research to make informed decisions.

HorseguyAi
v0. 0.8.24+commit.7dd6d404

v0.8.24

https://polygonscan.com/address/0x91b2745d7aca9d64560cd1693b6ff96678ffc433#code

Types of Severities

High

A high-severity issue or vulnerability means that your smart contract

can be exploited. Issues on this level are critical to the smart contract’s

performance or functionality, and we recommend these issues be fixed

before moving to a live environment.

Medium

The issues marked as medium severity usually arise because of errors

and deficiencies in the smart contract code. Issues on this level could

potentially bring problems, and they should still be fixed.

Low

Low-level severity issues can cause minor impact and or are just

warnings that can remain unfixed for now. It would be better to fix

these issues at some point in the future.

Informational

These are severity issues that indicate an improvement request, a

general question, a cosmetic or documentation error, or a request

for information. There is low-to-no impact.

10018 - Horseguy.ai (FOMO)

Techniques and Methods

The overall quality of code.

• Use of best practices.

• Code documentation and comments match logic and expected behavior.

• Token distribution and calculations are as per the intended behavior

mentioned in the whitepaper.

• implementation of ERC-20 token standards.

• Efficient use of gas.

• Code is safe f rom re-entrance and other vulnerabilities.

The following techniques, methods, and tools were used to review all the smart contracts.

Structural Analysis

In this step, we have analyzed the design patterns and structure of smart

contracts. A thorough check was done to ensure the smart contract is structured in

a way that will not result in future problems.

Static Analysis

Static analysis of smart contracts was done to identify contract vulnerabilities. In this

step, a series of automated tools are used to test the security of smart contracts.

Code Review / Manual Analysis

Manual analysis or review of code was done to identify new vulnerabilities or verify the

vulnerabilities found during the static analysis. Contracts were completely manually

analyzed, and their logic was checked and compared with the one described in the

whitepaper. Besides, the results of the automated analysis were manually verified.

Gas Consumption

In this step, we have checked the behavior of smart contracts in production. Checks

were done to know how much gas gets consumed and the possibilities of optimization

of code to reduce gas consumption.

Tools and Platforms Used for Audit

Remix IDE, Truffle, Truffle Team, Solhint, Mythril, Slither, Solidity statistic analysis.

10018 - Horseguy.ai (FOMO)

Manual Review, Functional Testing, Automated Testing etc.

The scope of this audit was to analyze the contract codebase for

quality, security, and correctness.

Method

Scope of Audit

High

Open Issues

Resolved Issues

Acknowledged Issues

Partially Resolved Issues

Low

0

0

0

0

0 0 0

0

0

Medium

0
Issues Found

High Medium

Low Informational

Informational

0

0

0

0

00 0

10018 - Horseguy.ai (FOMO)

Name Horseguy.ai (FOMO)

Audit Team AuditBlock

10018 Horseguy.ai.sol Pass

https://polygonscan.com/token/0x91b2745d7aca9d64560cd1693b6ff96678ffc433

Smart Contract Weakness Classification

(SWC) Vulnerabilities for Attacks

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

Exception Disorder

Gasless Send

Use of tx.origin

Compiler version not fixed

Address hardcoded

Divide before multiply

Integer overflow/underflow

Dangerous strict equalities

Tautology or contradiction

Return values of low-level calls

Missing Zero Address Validation

Private modifier

Revert/require functions

Using block.timestamp

Multiple Sends

Using SHA3

Using suicide

Using throw

Using inline assembly

10018 - Horseguy.ai (FOMO)

High Severity Issues

No issues found

Phase 1

Medium Severity Issues

No issues found

Low Severity Issues

No issues found

Informational Severity Issues

1. Less internal logic found!

Description

Our auditor identified that your contract has only one internal constructor that calls

external functions. The contract itself does not describe its own logic.

Recommendation

It is important to ensure that you double-check your function's usability and how it's

working with different behaviors. Should the contract itself contain logic or

methods?

Status

Acknowledged

Phase 2

10018 - Horseguy.ai (FOMO)

Context._contextSuffixLength() (contracts/HorseguyAi.sol#196-198) is never used and should be removed
Context._msgData() (contracts/HorseguyAi.sol#192-194) is never used and should be removed
ERC20._burn(address,uint256) (contracts/HorseguyAi.sol#552-557) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

Pragma version^0.8.24 (contracts/HorseguyAi.sol#10) necessitates a version too recent to be trusted.
Consider deploying with 0.8.18.
Pragma version^0.8.24 (contracts/HorseguyAi.sol#175) necessitates a version too recent to be trusted.
Consider deploying with 0.8.18.
Pragma version^0.8.24 (contracts/HorseguyAi.sol#206) necessitates a version too recent to be trusted.
Consider deploying with 0.8.18.
Pragma version^0.8.24 (contracts/HorseguyAi.sol#288) necessitates a version too recent to be trusted.
Consider deploying with 0.8.18.
Pragma version^0.8.24 (contracts/HorseguyAi.sol#316) necessitates a version too recent to be trusted.
Consider deploying with 0.8.18.
Pragma version^0.8.24 (contracts/HorseguyAi.sol#633) necessitates a version too recent to be trusted.
Consider deploying with 0.8.18.
solc-0.8.24 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

Closing Summary

In this report, we have considered the security of this Horseguy.ai (FOMO)

contract. We performed our audit according to the procedure described

above.

One issue was identified during the audit process, and their severity levels have been

classified. Recommendations and best practices have also been provided to enhance

code quality and security posture. The team has acknowledged all identified issues.

Disclaimer

AuditBlock does not provide security warranties, investment advice, or endorsements

of any platform. This audit does not guarantee the security or correctness of the

audited smart contracts. The statements made in this document should not be

interpreted as investment or legal advice. The authors are not liable for any decisions

made based on the information in this document. Securing smart contracts is an

ongoing process. A single audit is not sufficient. We recommend that the platform's

development team implement a bug bounty program to encourage further analysis of

the smart contract by other third parties

10018 - Horseguy.ai (FOMO)

https://polygonscan.com/token/0x91b2745d7aca9d64560cd1693b6ff96678ffc433

AuditBlock

AuditBlock is a blockchain security company that provides professional services

and solutions for securing blockchain projects. They specialize in smart contract

audits on various blockchains and offer a range of services

100+

Audits Completed

100K

Lines of Code Audited

$1M

Secured

10018 - Horseguy.ai (FOMO)

https://t.me/AuditBlock

https://github.com/AuditBlock

https://twitter.com/0AuditBlock

https://t.me/AuditBlock
https://t.me/AuditBlock
https://t.me/AuditBlock
https://github.com/AuditBlock
https://twitter.com/0AuditBlock

